Vibration and Buckling Behaviour of Laminated Composite Plate

نویسنده

  • Subrata Kumar
چکیده

Free vibration and buckling responses of laminated composite plate in the framework of first order shear deformation theory is analysed. The model has been developed in ANSYS using ANSYS parametric design language code. The model has been developed in ANSYS using ANSYS parametric design language code. In this study two shell elements (SHELL181/SHELL281) have been chosen from the ANSYS element library to discretise and obtain the elemental equations. The governing differential eigenvalue equations have been solved using Block-Lanczos algorithm. The solution predicts fundamental natural frequencies and critical buckling load of laminated composite plate. To establish the correctness of the proposed model, a convergence study has been done and the results obtained by using the model are compared with the available published literature. Effect of different parameters such as the thickness ratios, the aspect ratios, the modular ratios and the boundary conditions on the free vibration and buckling behavior of laminated composite plate is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries

The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...

متن کامل

Buckling and Free Vibration Analysis of Fiber Metal-laminated Plates Resting on Partial Elastic Foundation

This research presents, buckling and free vibration analysis of fiber metal-laminated (FML) plates on a total and partial elastic foundation using the generalized differential quadrature method (GDQM). The partial foundation consists of multi-section Winkler and Pasternak type elastic foundation. Taking into consideration the first-order shear deformation theory (FSDT), FML plate is modeled and...

متن کامل

Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM

In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...

متن کامل

Buckling Analysis of a Fiber Reinforced Laminated Composite Plate with Porosity

Fiber-reinforced laminated composites are frequently preferred in many engineering projects. With the development in production technology, the using of the fiber reinforced laminated composites has been increasing in engineering applications. In the production stage of the fiber-reinforced laminated composites, porosities could be occurred due to production or technical errors. After a level o...

متن کامل

Post-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques

In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013